All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Soil Microbiome Composition along the Natural Norway Spruce Forest Life Cycle

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F21%3A43903220" target="_blank" >RIV/60076658:12310/21:43903220 - isvavai.cz</a>

  • Alternative codes found

    RIV/00027073:_____/21:N0000007 RIV/62156489:43410/21:43919594

  • Result on the web

    <a href="https://www.mdpi.com/1999-4907/12/4/410/htm" target="_blank" >https://www.mdpi.com/1999-4907/12/4/410/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/f12040410" target="_blank" >10.3390/f12040410</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Soil Microbiome Composition along the Natural Norway Spruce Forest Life Cycle

  • Original language description

    Stand-replacing disturbances are a key element of the Norway spruce (Picea abies) forest life cycle. While the effect of a natural disturbance regime on forest physiognomy, spatial structure and pedocomplexity was well described in the literature, its impact on the microbiome, a crucial soil component that mediates nutrient cycling and stand productivity, remains largely unknown. For this purpose, we conducted research on a chronosequence of sites representing the post-disturbance development of a primeval Norway spruce forest in the Calimani Mts., Romania. The sites were selected along a gradient of duration from 16 to 160 years that ranges from ecosystem regeneration phases of recently disturbed open gaps to old-growth forest stands. Based on DNA amplicon sequencing, we followed bacterial and fungal community composition separately in organic, upper mineral and spodic horizons of present Podzol soils. We observed that the canopy opening and subsequent expansion of the grass-dominated understorey increased soil N availability and soil pH, which was reflected in enlarged bacterial abundance and diversity, namely due to the contribution of copiotrophic bacteria that prefer nutrient-richer conditions. The fungal community composition was affected by the disturbance as well but, contrary to our expectations, with no obvious effect on the relative abundance of ectomycorrhizal fungi. Once the mature stand was re-established, the N availability was reduced, the pH gradually decreased and the original old-growth forest microbial community dominated by acidotolerant oligotrophs recovered. The effect of the disturbance and forest regeneration was most evident in organic horizons, while the manifestation of these events was weaker and delayed in deeper soil horizons.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forests

  • ISSN

    1999-4907

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

  • UT code for WoS article

    000643029500001

  • EID of the result in the Scopus database

    2-s2.0-85104504529