Biogeochemical causes of sixty-year trends and seasonal variations of river water properties in a large European basin
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F21%3A43903661" target="_blank" >RIV/60076658:12310/21:43903661 - isvavai.cz</a>
Alternative codes found
RIV/60077344:_____/21:00553157
Result on the web
<a href="https://link.springer.com/article/10.1007/s10533-021-00800-z" target="_blank" >https://link.springer.com/article/10.1007/s10533-021-00800-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10533-021-00800-z" target="_blank" >10.1007/s10533-021-00800-z</a>
Alternative languages
Result language
angličtina
Original language name
Biogeochemical causes of sixty-year trends and seasonal variations of river water properties in a large European basin
Original language description
We evaluated long-term trends and seasonal variations in the major physical-chemical properties of the circum-neutral Slapy reservoir (Vltava, Czech Republic) from 1960 to 2019. Mean annual water temperature increased by 2.1 degrees C, flow maxima shifted by similar to 13 days from the early April to mid-March, and the onset of thermal stratification of water column and spring algal peaks advanced by 19 and 21 days, respectively, due to climate warming. Concentrations of major ions, phosphorus (P), and chlorophyll increased from the 1960s to the 1990-2000s, then decreased due to changing agricultural practices and legislation, intensified wastewater treatment, and decreasing atmospheric pollution. Concentrations of dissolved organic carbon (DOC) decreased from 1960 to the 1990s due to improved wastewater treatment, then began to increase in response to climate change and reduced acidic deposition. Concentrations of water constituents exhibited varying individual long-term and seasonal patterns due to the differing effects of following major processes on their production/removal in the catchment-river system: (1) applications of synthetic fertilizers, liming and farmland draining (NO3-, SO42-, Cl-, Ca2+, Mg2+, K+, and HCO3-), (2) wastewater production and treatment (DOC, P, N forms), (3) road de-icing (Cl- and Na+), (4) atmospheric pollution (SO42-), (5) climate change (DOC), and (6) the aging of reservoirs (NH4+). The water pH increased until the early 1990s, then decreased and exhibited pronounced seasonal variations, integrating the effects of changing external acidity sources and in-lake H+ sources and sinks (i.e., microbial CO2 production/consumption and availability and transformations of inorganic N), and changes in water buffering capacity. Anthropogenic and climatic effects, reservoir aging, and changes in water eutrophication thus may significantly affect water pH also in circum-neutral systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10501 - Hydrology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biogeochemistry
ISSN
0168-2563
e-ISSN
—
Volume of the periodical
154
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
81-98
UT code for WoS article
000645870500001
EID of the result in the Scopus database
2-s2.0-85105410860