Minimization of p-Laplacian via the Finite Element Method in MATLAB
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43904869" target="_blank" >RIV/60076658:12310/22:43904869 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007/978-3-030-97549-4.pdf?pdf=button" target="_blank" >https://link.springer.com/content/pdf/10.1007/978-3-030-97549-4.pdf?pdf=button</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-97549-4_61" target="_blank" >10.1007/978-3-030-97549-4_61</a>
Alternative languages
Result language
angličtina
Original language name
Minimization of p-Laplacian via the Finite Element Method in MATLAB
Original language description
Minimization of energy functionals is based on a discretization by the finite element method and optimization by the trust-region method. A key tool to an efficient implementation is a local evaluation of the approximated gradients together with sparsity of the resulting Hessian matrix. Vectorization concepts are explained for the p-Laplace problem in one and two space-dimensions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021)
ISBN
978-3-030-97549-4
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
8
Pages from-to
533-540
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Sozopol
Event date
Jun 7, 2021
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000893681300061