All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Latitude, Elevation, and Mean Annual Temperature Predict Peat Organic Matter Chemistry at a Global Scale

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F22%3A43905057" target="_blank" >RIV/60076658:12310/22:43905057 - isvavai.cz</a>

  • Result on the web

    <a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GB007057" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GB007057</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2021GB007057" target="_blank" >10.1029/2021GB007057</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Latitude, Elevation, and Mean Annual Temperature Predict Peat Organic Matter Chemistry at a Global Scale

  • Original language description

    Peatlands contain a significant fraction of global soil carbon, but how these reservoirs will respond to the changing climate is still relatively unknown. A global picture of the variations in peat organic matter chemistry will aid our ability to gauge peatland soil response to climate. The goal of this research is to test the hypotheses that (a) peat carbohydrate content, an indicator of soil organic matter reactivity, will increase with latitude and decrease with mean annual temperatures, (b) while peat aromatic content, an indicator of recalcitrance, will vary inversely, and (c) elevation will have a similar effect to latitude. We used Fourier Transform Infrared Spectroscopy to examine variations in the organic matter functional groups of 1034 peat samples collected from 10 to 20, 30-40, and 60-70 cm depths at 165 individual sites across a latitudinal gradient of 79 degrees N-65 degrees S and from elevations of 0-4,773 m. Carbohydrate contents of high latitude peat were significantly greater than peat originating near the equator, while aromatic content showed the opposite trend. For peat from similar latitudes but different elevations, the carbohydrate content was greater and aromatic content was lower at higher elevations. Higher carbohydrate content at higher latitudes indicates a greater potential for mineralization, whereas the chemical composition of low latitude peat is consistent with their apparent relative stability in the face of warmer temperatures. The combination of low carbohydrates and high aromatics at warmer locations near the equator suggests the mineralization of high latitude peat until reaching recalcitrance under a new temperature regime.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Global Biogeochemical Cycles

  • ISSN

    0886-6236

  • e-ISSN

    1944-9224

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000765649200001

  • EID of the result in the Scopus database

    2-s2.0-85125150794