All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Trait-based approaches as ecological time machines: Developing tools for reconstructing long-term variation in ecosystems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907128" target="_blank" >RIV/60076658:12310/23:43907128 - isvavai.cz</a>

  • Result on the web

    <a href="https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2435.14415" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2435.14415</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/1365-2435.14415" target="_blank" >10.1111/1365-2435.14415</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Trait-based approaches as ecological time machines: Developing tools for reconstructing long-term variation in ecosystems

  • Original language description

    Research over the past decade has shown that quantifying spatial variation in ecosystem properties is an effective approach to investigating the effects of environmental change on ecosystems. Yet, current consensus among scientists is that we need a better understanding of short- and long-term (temporal) variation in ecosystem properties to plan effective ecosystem management and predict future ecologies. Trait-based approaches can be used to reconstruct ecosystem properties from long-term ecological records and contribute significantly to developing understandings of ecosystem change over decadal to millennial time-scales. Here, we synthesise current trait-based approaches and explore how organisms&apos; functional traits (FTs) can be scaled across time and space. We propose a framework for reconstructing long-term variation in ecosystems by means of analysing FTs derived from palaeoecological datasets. We then summarise challenges that must be overcome to reconcile trait-based approaches with palaeo-datasets. Finally, we discuss the benefits and limitations of trait-based reconstructions of ecosystem temporal dynamics and suggest future directions for research. Reconstructing environmental properties through time vis-a-vis FTs can be separated into two parts. The first is to record trait data for organisms present in modern ecosystems, and the second is to reconstruct temporal variability in FTs from palaeoecological datasets, capturing changes in trait composition over time. Translating palaeoecological datasets into FTs is challenging due to taphonomic, taxonomic and chronological uncertainties, as well as uniformitarian assumptions. Explicitly identifying and addressing these challenges is important to effectively calculate changes in FT through time. Palaeo-trait research offers insights into questions related to short- and long-term ecosystem functioning, environmental change and extinction and community assembly rules across time. As work in this area matures, we expect that trait-based approaches integrating palaeoecology and neo-ecology will improve understanding of past ecologies and provide a deeper insight of their implications for present-day and future ecosystem management and conservation. Read the free Plain Language Summary for this article on the Journal blog.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Functional Ecology

  • ISSN

    0269-8463

  • e-ISSN

    1365-2435

  • Volume of the periodical

    37

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    2552-2569

  • UT code for WoS article

    001051981800001

  • EID of the result in the Scopus database

    2-s2.0-85168571305