Artificial intelligence based health indicator extraction and disease symptoms identification using medical hypothesis models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12310%2F23%3A43907487" target="_blank" >RIV/60076658:12310/23:43907487 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s10586-022-03697-x" target="_blank" >https://link.springer.com/article/10.1007/s10586-022-03697-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10586-022-03697-x" target="_blank" >10.1007/s10586-022-03697-x</a>
Alternative languages
Result language
angličtina
Original language name
Artificial intelligence based health indicator extraction and disease symptoms identification using medical hypothesis models
Original language description
Patient health record analysis models assist the medical field to understand the current stands and medical needs. Similarly, collecting and analyzing the disease features are the best practice for encouraging medical researchers to understand the research problems. Various research works evolve the way of medical data analysis schemes to know the actual challenges against the diseases. The computer-based diagnosis models and medical data analysis models are widely applied to have a better understanding of different diseases. Particularly, the field of medical electronics needs appropriate health indicator extraction models in near future. The existing medical schemes support baseline solutions but lack optimal hypothesis-based solutions. This work describes the optimal hypothesis model and Akin procedures for health record users, to aid health sectors in clinical decision-making on health indications. This work proposes Medical Hypothesis and Health Indicators Extraction from Electronic Medical Records (EMR) and International Classification of Diseases (ICD-10) patient examination database using the Akin Method and Friendship method. In this Health Indicators and Disease Symptoms Extraction (HIDSE), the evidence checking procedures find and collect all possible medical evidence from the existing patient examination report. Akin Method is making the hypothesis decision from count-based evidence principles. The health indicators extraction scheme extracts all relevant information based on the health indicators query and partial input. Similarly, the friendship method is used for making information associations between medical data attributes. This Akin-Friendship model helps to build hypothesis structures and trait-based feature extraction principles. This is called as Composite Akin Friendship Model (CAFM). This proposed model consists of various test cases for developing the medical hypothesis systems. On the other hand, it provides limited accuracy in disease classification. In this regard, the proposed HIDSE implements Deep Learning (DL) based Akin Friendship Method (DLAFM) for improving the accuracy of this medical hypothesis model. The proposed DLAFM, Convolutional Neural Networks (CNN) associated Legacy Prediction Model for Health Indicator (LPHI) is developed to tune the CAFM principles. The results show the proposed health indicator extraction scheme has 8-10% of better system performance than other existing techniques.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Cluster Computing-The Journal of Networks Software Tools and Applications
ISSN
1386-7857
e-ISSN
1573-7543
Volume of the periodical
26
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
2325-2337
UT code for WoS article
000843429400001
EID of the result in the Scopus database
2-s2.0-85136891122