All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Simson-Wallace Theorem and its Generalizations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12410%2F05%3A00006432" target="_blank" >RIV/60076658:12410/05:00006432 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Simson-Wallace Theorem and its Generalizations

  • Original language description

    Simson-Wallace Theorem is generalized into three dimensional space, both with respect to a tetrahedron and to a skew quadrilateral. The equations of respective cubic surfaces are derived.

  • Czech name

    O Simson-Wallaceově větě a jejím zobecnění

  • Czech description

    Simson-Wallaceova věta je zobecněna do trojrozměrného prostoru, jednak vzhledem ke čtyřstěnu, jednak vzhledem k prostorovému čtyřúhelníku. Jsou odvozeny rovnice příslušných kubických ploch.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal for Geometry and Graphics

  • ISSN

    1433-8157

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    141-153

  • UT code for WoS article

  • EID of the result in the Scopus database