All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Computation with Pentagons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12410%2F08%3A00010626" target="_blank" >RIV/60076658:12410/08:00010626 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Computation with Pentagons

  • Original language description

    The paper deals with properties of pentagons in a plane which are related to the area of a pentagon. First the formulas of Gauss and Monge holding for any pentagon in a plane are studied. Both formulas are derived by the theory of automated theorem proving. In the next part the area of cyclic pentagons is investigated. On the base of the Nagy-Rédey theorem and other results, the formula for the area of a cyclic pentagon which is given by its side lengths is rediscovered. This is the analogue of well-known Heron and Brahmagupta formulas for triangles and cyclic quadrilaterals. The method presented here could serve as a tool for solving this problem for cyclic n-gons for a higher n.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal for Geometry and Graphics

  • ISSN

    1433-8157

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    x

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database