Exploration of Dual Curves Using a Dynamic Geometry and Computer Algebra System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12410%2F19%3A43900321" target="_blank" >RIV/60076658:12410/19:43900321 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007/s11786-019-00433-4.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11786-019-00433-4.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11786-019-00433-4" target="_blank" >10.1007/s11786-019-00433-4</a>
Alternative languages
Result language
angličtina
Original language name
Exploration of Dual Curves Using a Dynamic Geometry and Computer Algebra System
Original language description
This submission presents a particular example of the use of the free dynamic mathematics software GeoGebra to determine the dual curve to the given curve and to inspect its properties. The example is aimed at students of mathematics teaching. The combination of dynamic geometry tools with computer algebra functions namely the functions for the computation of Groebner bases for polynomial ideals and a function for eliminating variables from the system of polynomial equations, based also on the method of Groebner bases, allows them to apply naturally the knowledge they acquire during their study of mathematics.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics in Computer Science
ISSN
1661-8270
e-ISSN
—
Volume of the periodical
Neuveden
Issue of the periodical within the volume
17 December 2019
Country of publishing house
CH - SWITZERLAND
Number of pages
8
Pages from-to
1-8
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85076595236