Trapping in the Random Conductance Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F13%3A43888054" target="_blank" >RIV/60076658:12510/13:43888054 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10955-012-0688-2" target="_blank" >http://dx.doi.org/10.1007/s10955-012-0688-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10955-012-0688-2" target="_blank" >10.1007/s10955-012-0688-2</a>
Alternative languages
Result language
angličtina
Original language name
Trapping in the Random Conductance Model
Original language description
We consider random walks on Zd among nearest-neighbor random conductances which are i.i.d., positive, bounded uniformly from above but whose support extends all the way to zero. Our focus is on the detailed properties of the paths of the random walk conditioned to return back to the starting point at time 2n.We show that in the situations when the heat kernel exhibits subdiffusive decay-which is known to occur in dimensions d ? 4-the walk gets trapped for a time of order n in a small spatial region. This shows that the strategy used earlier to infer subdiffusive lower bounds on the heat kernel in specific examples is in fact dominant. In addition, we settle a conjecture concerning the worst possible subdiffusive decay in four dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F1558" target="_blank" >GAP201/11/1558: Random walks and random fields in models of statistical mechanics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Statistical Physics
ISSN
0022-4715
e-ISSN
—
Volume of the periodical
150
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
66-87
UT code for WoS article
—
EID of the result in the Scopus database
—