Limit theorems for weighted Bernoulli random fields under Hannan's condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F16%3A43890360" target="_blank" >RIV/60076658:12510/16:43890360 - isvavai.cz</a>
Result on the web
<a href="http://authors.elsevier.com/a/1SrC615DqUtuDX" target="_blank" >http://authors.elsevier.com/a/1SrC615DqUtuDX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.spa.2015.12.006" target="_blank" >10.1016/j.spa.2015.12.006</a>
Alternative languages
Result language
angličtina
Original language name
Limit theorems for weighted Bernoulli random fields under Hannan's condition
Original language description
Recently, invariance principles for partial sums of Bernoulli random fields over rectangular index sets have been proved under Hannan's condition. In this note we complement previous results by establishing limit theorems for weighted Bernoulli random fields, including central limit theorems for partial sums over arbitrary index sets and invariance principles for Gaussian random fields. Most results improve earlier ones on Bernoulli random fields under Wu's condition, which is stronger than Hannan's condition.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP201%2F11%2FP164" target="_blank" >GPP201/11/P164: Martingale approximations and U-statistics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Stochastic Processes and their Applications
ISSN
0304-4149
e-ISSN
—
Volume of the periodical
126
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
1819-1838
UT code for WoS article
000375176600008
EID of the result in the Scopus database
—