All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On parameter estimation for doubly inhomogeneous cluster point processes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F17%3A43892131" target="_blank" >RIV/60076658:12510/17:43892131 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.spasta.2017.03.005" target="_blank" >http://dx.doi.org/10.1016/j.spasta.2017.03.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.spasta.2017.03.005" target="_blank" >10.1016/j.spasta.2017.03.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On parameter estimation for doubly inhomogeneous cluster point processes

  • Original language description

    Nowadays, spatial inhomogeneity and clustering are two important features frequently observed in point patterns. These features often reveal heterogeneity of processes/factors involved in the point pattern formation and interaction determining the relative locations of points. Thus, inhomogeneous cluster point processes can be viewed as flexible and relevant models for describing point patterns observed in biology, forestry and economics for example. In this article, we consider cluster point processes with double inhomogeneity in which locations of cluster centers are drawn under an inhomogeneous parametric intensity function and the distribution of clusters is spatially inhomogeneous and depends on a given parametric function. We propose a Bayesian estimation procedure based on an MCMC algorithm to simultaneously estimate inhomogeneity parameters, cluster parameters and cluster centers. This modeling and estimation framework was applied to a toy case study dealing with the small-scale dispersal of spores of a fungal pathogen infecting plants.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA16-03708S" target="_blank" >GA16-03708S: Spatial geometrical statistics of random sets in Euclidean spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Spatial Statistics

  • ISSN

    2211-6753

  • e-ISSN

  • Volume of the periodical

    2017

  • Issue of the periodical within the volume

    20

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    191-205

  • UT code for WoS article

    000405608800009

  • EID of the result in the Scopus database