All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

In vitro effects of diosmin, naringenin, quercetin and indole-3-carbinol on fish hepatic CYP1A1 in the presence of clotrimazole and dexamethasone

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F18%3A43896115" target="_blank" >RIV/60076658:12520/18:43896115 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0045653517316909?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045653517316909?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2017.10.106" target="_blank" >10.1016/j.chemosphere.2017.10.106</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    In vitro effects of diosmin, naringenin, quercetin and indole-3-carbinol on fish hepatic CYP1A1 in the presence of clotrimazole and dexamethasone

  • Original language description

    Phytochemicals are widely present in fruits, vegetables and other plants and have great health benefits owing to their antioxidant properties. They are naturally found in the aquatic environment as well as discharged from sewage treatment plants after their large consumption. Little is known about their impact on fish; particularly in light of their interactions with pharmaceuticals. Therefore, this study was designed to determine the effects of diosmin, naringenin, quercetin and idole-3-carbinol on CYP1A-dependent 7-ethoxyresorufin-O-deethylase (EROD) activity on rainbow trout hepatic microsomes in the presence of two pharmaceuticals: clotrimazole and dexamethasone. The interactions between the phytochemicals and pharmaceuticals used in this study were determined using a combination index. Hepatic microsomes were exposed to two concentrations (1-or 50 mu M) of phytochemicals and pharmaceuticals separately and in combinations. Singly, clotrimazole inhibited EROD activity 40% and 90% of control, while dexamethasone did not. Naringenin and diosmin inhibited EROD activity alone up to 90% and 55% respectively, but activities were further inhibited in the presence of either pharmaceutical. The preliminary study of combinations of clotrimazole with phytochemicals primarily showed synergistic effects. While EROD activity was not inhibited in the presence of quercetin or indole-3-carbinol, significant and synergistic inhibition was detected when either of these was combined with clotrimazole or dexamethasone.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemosphere

  • ISSN

    0045-6535

  • e-ISSN

  • Volume of the periodical

    192

  • Issue of the periodical within the volume

    2/2018

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    105-112

  • UT code for WoS article

    000418313900013

  • EID of the result in the Scopus database

    2-s2.0-85032504888