All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of Fish Species Using Silhouettes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F20%3A43900938" target="_blank" >RIV/60076658:12520/20:43900938 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-45385-5_28" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-45385-5_28</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-45385-5_28" target="_blank" >10.1007/978-3-030-45385-5_28</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of Fish Species Using Silhouettes

  • Original language description

    The classification of the fish silhouettes allows a quick decision of the fish species presence and amount in the given scene. The classical approach of the machine learning is used to test the question of linear separability of fish species silhouettes classes. The preprocessing of images consisted of object to background segmentation and image registration. The classificator is trained using modified Rosenblatt algorithm for loss function of discriminant analysis. This article is disseminating the preliminary results of training and testing of six fish species classification. The images were of different quality and light conditions. The classificator with the possibility to undecide is introduced and compared. The results are discussed from the point of view of usability of classical methods, preprocessing conditioning, and parametrization of loss function. © Springer Nature Switzerland AG 2020.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/ED2.1.00%2F19.0380" target="_blank" >ED2.1.00/19.0380: The CENAKVA Centre Development</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    978-3-030-45384-8

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    310-319

  • Publisher name

    Springer

  • Place of publication

    Grandada, Spain

  • Event location

    Granada, Spain

  • Event date

    May 6, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article