Specificity of Germ Cell Technologies in Sturgeons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F20%3A43901835" target="_blank" >RIV/60076658:12520/20:43901835 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Specificity of Germ Cell Technologies in Sturgeons
Original language description
Sturgeons are one of the oldest, biggest, most valuable and today also most endangered group of fish species. Germ stem cells (GSCs), such us embryonic primordial germ cells (PGCs) or spermatogonial/oogonial stem cells, can be a key for an effective conservation and possible restoration of these unique and astonishing fishes. In this chapter, labeling, development, isolation, and transplantation of GSCs were studied in sturgeons. It was shown that the maternally supplied germ plasm, which determines the PGC origin, is localized in vegetal pole of ovulated egg and remains there throughout the cleavage period, and therefore, the PGC specification pattern is similar to that of anuran amphibians rather than teleostean fishes. This knowledge enabled to develop an original PGC labeling method using common cell tracer dye injection into the vegetal pole of two- to eight-cell stage embryo. Next inhibition of maternally supplied dead end RNA resulted in PGC mismigration and general sterilization of individuals. This method enables preparation of recipients for germ cell transplantation. Isolation and transplantation of spermatogonia and oogonia were developed as well. It was tested that one sturgeon juvenile (Siberian sturgeon) can provide approximately one million germ cells suitable for transplantation. Moreover, it was shown that these cells are capable of propagation via an in vitro culture system and of cryopreservation. After freezing/thawing of sturgeon gonadal tissue followed by enzymatic dissociation, above 90% of viable cells were obtained and used for transplantation. The technique of surrogate production can be applied for conservation and possibly restoration of critically endangered sturgeon species with a long term of maturation and a big body size (e.g., beluga), whereas a more common species with shorter term of maturation and smaller body size (e.g., sterlet) can be used as a recipient (surrogate parent).
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10604 - Reproductive biology (medical aspects to be 3)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Reproduction in Aquatic Animals
ISBN
978-981-15-2289-5
Number of pages of the result
22
Pages from-to
335-356
Number of pages of the book
379
Publisher name
Springer Nature Singapore Pte Ltd.
Place of publication
Singapore
UT code for WoS chapter
—