All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Specificity of Germ Cell Technologies in Sturgeons

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F20%3A43901835" target="_blank" >RIV/60076658:12520/20:43901835 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Specificity of Germ Cell Technologies in Sturgeons

  • Original language description

    Sturgeons are one of the oldest, biggest, most valuable and today also most endangered group of fish species. Germ stem cells (GSCs), such us embryonic primordial germ cells (PGCs) or spermatogonial/oogonial stem cells, can be a key for an effective conservation and possible restoration of these unique and astonishing fishes. In this chapter, labeling, development, isolation, and transplantation of GSCs were studied in sturgeons. It was shown that the maternally supplied germ plasm, which determines the PGC origin, is localized in vegetal pole of ovulated egg and remains there throughout the cleavage period, and therefore, the PGC specification pattern is similar to that of anuran amphibians rather than teleostean fishes. This knowledge enabled to develop an original PGC labeling method using common cell tracer dye injection into the vegetal pole of two- to eight-cell stage embryo. Next inhibition of maternally supplied dead end RNA resulted in PGC mismigration and general sterilization of individuals. This method enables preparation of recipients for germ cell transplantation. Isolation and transplantation of spermatogonia and oogonia were developed as well. It was tested that one sturgeon juvenile (Siberian sturgeon) can provide approximately one million germ cells suitable for transplantation. Moreover, it was shown that these cells are capable of propagation via an in vitro culture system and of cryopreservation. After freezing/thawing of sturgeon gonadal tissue followed by enzymatic dissociation, above 90% of viable cells were obtained and used for transplantation. The technique of surrogate production can be applied for conservation and possibly restoration of critically endangered sturgeon species with a long term of maturation and a big body size (e.g., beluga), whereas a more common species with shorter term of maturation and smaller body size (e.g., sterlet) can be used as a recipient (surrogate parent).

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

  • OECD FORD branch

    10604 - Reproductive biology (medical aspects to be 3)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Reproduction in Aquatic Animals

  • ISBN

    978-981-15-2289-5

  • Number of pages of the result

    22

  • Pages from-to

    335-356

  • Number of pages of the book

    379

  • Publisher name

    Springer Nature Singapore Pte Ltd.

  • Place of publication

    Singapore

  • UT code for WoS chapter