Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F21%3A43902526" target="_blank" >RIV/60076658:12520/21:43902526 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1038/s41467-021-21164-w" target="_blank" >https://doi.org/10.1038/s41467-021-21164-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-021-21164-w" target="_blank" >10.1038/s41467-021-21164-w</a>
Alternative languages
Result language
angličtina
Original language name
Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain
Original language description
Analytical limitations considerably hinder our understanding of the impacts of the physicochemical properties of nanomaterials (NMs) on their biological fate in organisms. Here, using a fit-for-purpose analytical workflow, including dosing and emerging analytical techniques, NMs present in organisms are characterized and quantified across an aquatic food chain. The size and shape of gold (Au)-NMs are shown to control the number of Au-NMs attached to algae that were exposed to an equal initial concentration of 2.9x10(11) particles mL(-1). The Au-NMs undergo size/shape-dependent dissolution and agglomeration in the gut of the daphnids, which determines the size distribution of the NMs accumulated in fish. The biodistribution of NMs in fish tissues (intestine, liver, gills, and brain) also depends on NM size and shape, although the highest particle numbers per unit of mass are almost always present in the fish brain. The findings emphasize the importance of physicochemical properties of metallic NMs in their biotransformations and tropic transfers. Biological fate of nanomaterials in organisms is an important topic, however, limitations of analytical techniques has hampered understanding. Here, the authors report on a study into the fate of model, gold nanoparticles in an aquatic food chain using an analytical workflow and range of analytical methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Communications
ISSN
2041-1723
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
—
UT code for WoS article
000620230000024
EID of the result in the Scopus database
2-s2.0-85100749962