Trophic structure of a pond community dominated by an invasive alien species: Insights from stomach content and stable isotope analyses
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12520%2F21%3A43902579" target="_blank" >RIV/60076658:12520/21:43902579 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/aqc.3530" target="_blank" >https://doi.org/10.1002/aqc.3530</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aqc.3530" target="_blank" >10.1002/aqc.3530</a>
Alternative languages
Result language
angličtina
Original language name
Trophic structure of a pond community dominated by an invasive alien species: Insights from stomach content and stable isotope analyses
Original language description
Invaders affect native species across multiple trophic levels, influencing the structure and stability of freshwater communities. Based on the 'trophic position hypothesis', invaders at the top of the food web are more harmful to native species via direct and indirect effects than trophically analogous native predators are. However, introduced and native predators can coexist, especially when non-native species have no ecological and behavioural similarities with natives, occupy an empty niche, or natives show generalist anti-predator strategies that are effective at the community level. At present, conservation efforts are focused on eradicating invaders; however, their removal may lead to unwanted and unexpected outcomes, especially when invaders are well established and strongly interspersed with natives. This highlights the need to consider invaders in a whole-ecosystem context and to consider the evolutionary history and behavioural ecology of natives and invaders before active management is applied. Here, stomach content and stable isotope analyses were combined to investigate a pond system dominated by invaders in order to understand the effects of the interactions among upper level predators and lower level members of the food web on the whole community structure. Both diet and isotope analyses showed that several invaders contributed to the diet of natives and invaders. A significant isotope overlap was found among upper level predators. However, stomach content analysis suggested that predators reduced the potential competition differentiating the food spectrum by including additional prey in their diet. Both native and non-native upper level predators, by preying on invaders, seem not to exert a strong suppressive effect through predation and competition on native species. This research confirms the importance of studying food webs to identify ecological conditions that forecast the potential for deleterious impacts before management is applied. In cases where invaders cannot be eradicated, management efforts should follow a conciliatory approach promoting the coexistence of native species with invaders.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Aquatic Conservation: Marine and Freshwater Ecosystems
ISSN
1052-7613
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
948-963
UT code for WoS article
000620995200001
EID of the result in the Scopus database
2-s2.0-85101272165