All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing the Inhibition of a Uniquely Composed Trypanosoma brucei F1-ATPase

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F14%3A00488324" target="_blank" >RIV/60077344:_____/14:00488324 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.parazitologie.cz/protozoologie/Protodny2014/JPD_sbornik_2014.pdf" target="_blank" >http://www.parazitologie.cz/protozoologie/Protodny2014/JPD_sbornik_2014.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing the Inhibition of a Uniquely Composed Trypanosoma brucei F1-ATPase

  • Original language description

    The transition of the parasitic Trypanosoma brucei between its invertebrate and vertebrate hosts is associated with substantial bioenergetic pathway changes. While substrate and oxidative phosphorylation (OXPHOS) provide the main source of ATP in the procyclic stage (PS), increased glycolysis of abundant glucose in the bloodstream form (BS) compensates for the absence of OXPHOS - requiring the F1Fo-ATPase to maintain the mitochondrial membrane potential at the expense of ATP. A widespread natural protein inhibitor of F1Fo-ATPase activity (TbIF1) is expressed in PS, while its ectopic expression is lethal in BS. To characterize TbIF1 inhibition, we isolated the F1-ATPase from PS by two-step chromatography. Besides the conserved eukaryotic components (3 3), the complex contains an additional trypanosomatid-specific protein, p18. The previously reported subunit cleavage was confirmed and modeled to a region presumed to form a loop between the crown and NTP-binding domains, a unique feature of F1-ATPase in Kinetoplastids. Furthermore, several recombinant TbIF1 mutants were characterized to determine their dissociation constants and oligomerization properties. While the C-terminal deletion of TbIF1 prevents homodimerization, it does not disrupt the pH sensitivity as it does in bovine IF1. Importantly, TbIF1 cannot inhibit bovine F1-ATPase and vice versa, strengthening the differences between the parasite and mammals. The established purification of a uniquely composed F1-ATPase is suitable for structure resolution by X-ray crystallography. Given the non-conventional function of F1-ATPase in BS and the F1-TbIF1 binding data, we propose that the structure could be exploited to design specific inhibitors for potential use in therapeutics.n

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/LL1205" target="_blank" >LL1205: Exploration of the unique charakters od the Trypanosoma brucei FoF1 ATP synthase complex for future drug development against african sleeping sickness.</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů