All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Asymptotic stability of tri-trophic food chains sharing a common resource

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F15%3A00449932" target="_blank" >RIV/60077344:_____/15:00449932 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985840:_____/15:00449932 RIV/60076658:12310/15:43890202

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.mbs.2015.10.005" target="_blank" >http://dx.doi.org/10.1016/j.mbs.2015.10.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.mbs.2015.10.005" target="_blank" >10.1016/j.mbs.2015.10.005</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Asymptotic stability of tri-trophic food chains sharing a common resource

  • Original language description

    One of the key results of the food web theory states that the interior equilibrium of a tri-trophic food chain described by the Lotka?Volterra type dynamics is globally asymptotically stable whenever it exists. This article extends this result to food webs consisting of several food chains sharing a common resource. A Lyapunov function for such food webs is constructed and asymptotic stability of the interior equilibrium is proved. Numerical simulations show that as the number of food chains increases,the real part of the leading eigenvalue, while still negative, approaches zero. Thus the resilience of such food webs decreases with the number of food chains in the web.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    EH - Ecology - communities

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Biosciences

  • ISSN

    0025-5564

  • e-ISSN

  • Volume of the periodical

    270

  • Issue of the periodical within the volume

    Part A

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    90-94

  • UT code for WoS article

    000367771000008

  • EID of the result in the Scopus database

    2-s2.0-84947605719