Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp Strain PCC 6803
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F15%3A00454042" target="_blank" >RIV/60077344:_____/15:00454042 - isvavai.cz</a>
Alternative codes found
RIV/61388971:_____/15:00454042 RIV/60076658:12310/15:43888686
Result on the web
<a href="http://dx.doi.org/10.1104/pp.15.01150" target="_blank" >http://dx.doi.org/10.1104/pp.15.01150</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1104/pp.15.01150" target="_blank" >10.1104/pp.15.01150</a>
Alternative languages
Result language
angličtina
Original language name
Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp Strain PCC 6803
Original language description
The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted Delta pgsA mutant of Synechocystis sp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of DpgsA mutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CE - Biochemistry
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Plant Physiology
ISSN
0032-0889
e-ISSN
—
Volume of the periodical
169
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
1307-1317
UT code for WoS article
000365401000036
EID of the result in the Scopus database
—