Facing the heat: Thermoregulation and behavior of lowland species of a cold-dwelling butterfly genus, Erebia
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F16%3A00464688" target="_blank" >RIV/60077344:_____/16:00464688 - isvavai.cz</a>
Result on the web
<a href="http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150393" target="_blank" >http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150393</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0150393" target="_blank" >10.1371/journal.pone.0150393</a>
Alternative languages
Result language
angličtina
Original language name
Facing the heat: Thermoregulation and behavior of lowland species of a cold-dwelling butterfly genus, Erebia
Original language description
Understanding the potential of animals to immediately respond to changing temperatures is imperative for predicting the effects of climate change on biodiversity. Ectothermic animals, such as insects, use behavioural thermoregulation to keep their body temperature within suitable limits. It may be particularly important at warm margins of species occurrence, where populations are sensitive to increasing air temperatures. In the field, we studied thermal requirements and behavioural thermoregulation in low-altitude populations of the Satyrinae butterflies Erebia aethiops, E. euryale and E. medusa. We compared the relationship of individual body temperature with air and microhabitat temperatures for the low-altitude Erebia species to our data on seven mountain species, including a high-altitude population of E. euryale, studied in the Alps. We found that the grassland butterfly E. medusa was well adapted to the warm lowland climate and it was active under the highest air temperatures and kept the highest body temperature of all species. Contrarily, the woodland species, E. aethiops and a low-altitude population of E. euryale, kept lower body temperatures and did not search for warm microclimates as much as other species. Furthermore, temperature-dependence of daily activities also differed between the three low-altitude and the mountain species. Lastly, the different responses to ambient temperature between the low-and high-altitude populations of E. euryale suggest possible local adaptations to different climates. We highlight the importance of habitat heterogeneity for long-term species survival, because it is expected to buffer climate change consequences by providing a variety of microclimates, which can be actively explored by adults. Alpine species can take advantage of warm microclimates, while low-altitude grassland species may retreat to colder microhabitats to escape heat, if needed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
EH - Ecology - communities
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLoS ONE
ISSN
1932-6203
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
—
UT code for WoS article
000372701200024
EID of the result in the Scopus database
2-s2.0-84962090186