All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Novel Synechococcus genomes reconstructed from freshwater reservoirs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F17%3A00479654" target="_blank" >RIV/60077344:_____/17:00479654 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.3389/fmicb.2017.01151" target="_blank" >http://dx.doi.org/10.3389/fmicb.2017.01151</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3389/fmicb.2017.01151" target="_blank" >10.3389/fmicb.2017.01151</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Novel Synechococcus genomes reconstructed from freshwater reservoirs

  • Original language description

    Freshwater picocyanobacteria including Synechococcus remain poorly studied at the genomic level, compared to their marine representatives. Here, using a metagenomic assembly approach we discovered two novel Synechococcus sp. genomes from two freshwater reservoirs Tous and Lake Lanier, both sharing 96% average nucleotide identity and displaying high abundance levels in these two lakes located at similar altitudes and temperate latitudes. These new genomes have the smallest estimated size (2.2 Mb) and average intergenic spacer length (20 bp) of any previously sequenced freshwater Synechococcus, which may contribute to their success in oligotrophic freshwater systems. Fluorescent in situ hybridization confirmed that Synechococcus sp. Tous comprises small cells (0.987 +/- 0.139 m m length, 0.723 +/- 0.119 m m width) that amount to 90% of the picocyanobacteria in Tous. They appear together in a phylogenomic tree with Synechococcus sp. RCC307 strain, the main representative of sub-cluster 5.3 that has itself one of the smallest marine Synechococcus genomes. We detected a type II phycobilisome (PBS) gene cluster in both genomes, which suggests that they belong to a phycoerythrin-rich pink low-light ecotype. The decrease of acidic proteins and the higher content of basic transporters and membrane proteins in the novel Synechococcus genomes, compared to marine representatives, support their freshwater specialization. A sulfate Cys transporter which is absent in marine but has been identified in many freshwater cyanobacteria was also detected in Synechococcus sp. Tous. The RuBisCo subunits from this microbe are phylogenetically close to the freshwater amoeba Paulinella chromatophora symbiont, hinting to a freshwater origin of the carboxysome operon of this protist. The novel genomes enlarge the known diversity of freshwater Synechococcus and improve the overall knowledge of the relationships among members of this genus at large.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    <a href="/en/project/GA17-04828S" target="_blank" >GA17-04828S: Unveiling life strategies of uncultivated viruses in freshwater environments using metagenomics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Frontiers in Microbiology

  • ISSN

    1664-302X

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000403761000001

  • EID of the result in the Scopus database

    2-s2.0-85021213645