Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F18%3A00493438" target="_blank" >RIV/60077344:_____/18:00493438 - isvavai.cz</a>
Result on the web
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193822" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193822</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0193822" target="_blank" >10.1371/journal.pone.0193822</a>
Alternative languages
Result language
angličtina
Original language name
Simulated tri-trophic networks reveal complex relationships between species diversity and interaction diversity
Original language description
Most of earth's biodiversity is comprised of interactions among species, yet it is unclear what causes variation in interaction diversity across space and time. We define interaction diversity as the richness and relative abundance of interactions linking species together at scales from localized, measurable webs to entire ecosystems. Large-scale patterns suggest that two basic components of interaction diversity differ substantially and predictably between different ecosystems: overall taxonomic diversity and host specificity of consumers. Understanding how these factors influence interaction diversity, and quantifying the causes and effects of variation in interaction diversity are important goals for community ecology. While previous studies have examined the effects of sampling bias and consumer specialization on determining patterns of ecological networks, these studies were restricted to two trophic levels and did not incorporate realistic variation in species diversity and consumer diet breadth. Here, we developed a food web model to generate tri-trophic ecological networks, and evaluated specific hypotheses about how the diversity of trophic interactions and species diversity are related under different scenarios of species richness, taxonomic abundance, and consumer diet breadth. We investigated the accumulation of species and interactions and found that interactions accumulate more quickly, thus, the accumulation of novel interactions may require less sampling effort than sampling species in order to get reliable estimates of either type of diversity. Mean consumer diet breadth influenced the correlation between species and interaction diversity significantly more than variation in both species richness and taxonomic abundance. However, this effect of diet breadth on interaction diversity is conditional on the number of observed interactions included in the models.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLoS ONE
ISSN
1932-6203
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
—
UT code for WoS article
000428351800014
EID of the result in the Scopus database
2-s2.0-85044516329