Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the Andrographis paniculata
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F18%3A00507447" target="_blank" >RIV/60077344:_____/18:00507447 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs11738-018-2746-0" target="_blank" >https://link.springer.com/article/10.1007%2Fs11738-018-2746-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11738-018-2746-0" target="_blank" >10.1007/s11738-018-2746-0</a>
Alternative languages
Result language
angličtina
Original language name
Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the Andrographis paniculata
Original language description
Andrographolide is a diterpene secondary metabolite product of Andrographis paniculata. It has been known to be a pharmaceutically important compound synthesized via the cytosolic mevalonate (MVA) and the plastidial 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways. To understand the biosynthetic pathway of andrographolide biosynthesis in Andrographis paniculata, lovastatin, fosmidomycin and methyl jasmonate (MeJA) were used to inhibit the key enzymes 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), and 1-deoxy-d-xylulose-5-phosphate reducto-isomerase (DXR) involved in the synthesis of andrographolide in the MVA and MEP pathways, respectively. The inhibition of andrographolide accumulation was linked with the expression level of the studied regulatory genes, 3-hydroxy-3-methyl glutaryl coenzyme A synthase (hmgs), 3-hydroxy-3-methyl glutaryl coenzyme A reductase (hmgr), 1-deoxyxylulose-5-phosphate synthase (dxs), 1-deoxyxylulose-5-phosphate reductoisomerase (dxr), 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (hds),1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (hdr), 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase(isph), isopentenyl diphosphate isomerase (ipp), geranylgeranyl diphosphatesynthase (ggps) of the MVA and MEP pathways. The pathways associated transcript expression level, and andrographolide biosynthesis was significantly modulated by the inhibitors indicating that the andrographolide biosynthesis is strongly responsive at the transcriptional level. The results demonstrated that both pathways can contribute to the biosynthesis of andrographolide in A. paniculata. Both hmgr and dxr played a critical role consistent with some crossover between MVA and MEP pathways in andrographolide biosynthesis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Physiologiae Plantarum
ISSN
0137-5881
e-ISSN
—
Volume of the periodical
40
Issue of the periodical within the volume
9
Country of publishing house
PL - POLAND
Number of pages
11
Pages from-to
165
UT code for WoS article
000443060500001
EID of the result in the Scopus database
2-s2.0-85052387315