Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F19%3A00505426" target="_blank" >RIV/60077344:_____/19:00505426 - isvavai.cz</a>
Alternative codes found
RIV/86652079:_____/19:00505426 RIV/60460709:41320/19:80302
Result on the web
<a href="https://www.nature.com/articles/s41586-019-1128-0" target="_blank" >https://www.nature.com/articles/s41586-019-1128-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-019-1128-0" target="_blank" >10.1038/s41586-019-1128-0</a>
Alternative languages
Result language
angličtina
Original language name
Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
Original language description
The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools(1,2), sequester carbon(3,4) and withstand the effects of climate change(5,6). Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables-in particular, climatically controlled variation in the rate of decomposition-are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species(7), constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients, these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers-which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)-are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
<a href="/en/project/GA16-09427S" target="_blank" >GA16-09427S: The impacts of tropical forest degradation and fragmentation on ant-plant mutualisms, and consequences for plant community dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature
ISSN
0028-0836
e-ISSN
—
Volume of the periodical
569
Issue of the periodical within the volume
7756
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
404-+
UT code for WoS article
000468123700038
EID of the result in the Scopus database
2-s2.0-85065790614