All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F19%3A00509912" target="_blank" >RIV/60077344:_____/19:00509912 - isvavai.cz</a>

  • Result on the web

    <a href="https://bmcbiol.biomedcentral.com/track/pdf/10.1186/s12915-019-0688-7" target="_blank" >https://bmcbiol.biomedcentral.com/track/pdf/10.1186/s12915-019-0688-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12915-019-0688-7" target="_blank" >10.1186/s12915-019-0688-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake

  • Original language description

    Background The planetary sulfur cycle is a complex web of chemical reactions that can be microbial-mediated or can occur spontaneously in the environment, depending on the temperature and pH. Inorganic sulfur compounds can serve as energy sources for specialized prokaryotes and are important substrates for microbial growth in general. Here, we investigate dissimilatory sulfur cycling in the brine and sediments of a southwestern Siberian soda lake characterized by an extremely high pH and salinity, combining meta-omics analyses of its uniquely adapted highly diverse prokaryote communities with biogeochemical profiling to identify key microbial players and expand our understanding of sulfur cycling under haloalkaline conditions. Results Peak microbial activity was found in the top 4 cm of the sediments, a layer with a steep drop in oxygen concentration and redox potential. The majority of sulfur was present as sulfate or iron sulfide. Thiosulfate was readily oxidized by microbes in the presence of oxygen, but oxidation was partially inhibited by light. We obtained 1032 metagenome-assembled genomes, including novel population genomes of characterized colorless sulfur-oxidizing bacteria (SOB), anoxygenic purple sulfur bacteria, heterotrophic SOB, and highly active lithoautotrophic sulfate reducers. Surprisingly, we discovered the potential for nitrogen fixation in a new genus of colorless SOB, carbon fixation in a new species of phototrophic Gemmatimonadetes, and elemental sulfur/sulfite reduction in the Candidatus Woesearchaeota. Polysulfide/thiosulfate and tetrathionate reductases were actively transcribed by various (facultative) anaerobes. Conclusions The recovery of over 200 genomes that encoded enzymes capable of catalyzing key reactions in the inorganic sulfur cycle indicates complete cycling between sulfate and sulfide at moderately hypersaline and extreme alkaline conditions. Our results suggest that more taxonomic groups are involved in sulfur dissimilation than previously assumed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    <a href="/en/project/GA17-04828S" target="_blank" >GA17-04828S: Unveiling life strategies of uncultivated viruses in freshwater environments using metagenomics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BMC BIOLOGY

  • ISSN

    1741-7007

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    69

  • UT code for WoS article

    000483037800001

  • EID of the result in the Scopus database

    2-s2.0-85071337474