All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Development of nutrient uptake by understory plant Arrhenatherum elatius and microbial biomass during primary succession of forest soils in post-mining land

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F20%3A00531057" target="_blank" >RIV/60077344:_____/20:00531057 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1999-4907/11/2/247" target="_blank" >https://www.mdpi.com/1999-4907/11/2/247</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/f11020247" target="_blank" >10.3390/f11020247</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Development of nutrient uptake by understory plant Arrhenatherum elatius and microbial biomass during primary succession of forest soils in post-mining land

  • Original language description

    The development of plant and soil microbial communities is one of the basic preconditions for the restoration of functional ecosystems. However, nutrients are concurrently used by plants and microbes, and the dynamics of this interaction during ecosystem development have seldom been studied. The aim of our study, thus, was to describe the dynamics of nutrient availability in soil and, at the same time, the nutrient accumulation in plant and microbial biomass along an unassisted primary succession heading toward broadleaf forest. The growth of the understory plant Arrhenatherum elatius on soils originating from three (16, 22, and 45 years' old) successional stages of a post-mining area and the development of the microbial community in the presence or absence of this plant were studied in a pot experiment. Both, the plant biomass and carbon (C) in microbial biomass in intermediate and late middle successional stages were higher than those in the early stage. In soil, extractable organic C, extractable organic nitrogen (N), and inorganic N increased with proceeding succession, but Olsen phosphorus (P) peaked in the intermediate successional stage. The amounts of N and P in plant and microbial biomass increased during succession. In the late middle successional stage, the amount of P in microbial biomass exceeded that of plant bound P approximately twice, and this increase was higher in pots with plants than without. The results imply that the competition between plants and microbes for available P may increase microbial P uptake and, thus, hinder plant growth in later successional stages.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

    <a href="/en/project/GA18-24138S" target="_blank" >GA18-24138S: Soil aggregate formation and its role in soil organic matter stabilization and water holding capacity along a chronosequences of primary and secondary</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forests

  • ISSN

    1999-4907

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    9

  • Pages from-to

    247

  • UT code for WoS article

    000519236600060

  • EID of the result in the Scopus database

    2-s2.0-85081129698