Impacts of predator-induced behavioural plasticity on the temperature dependence of predator–prey activity and population dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F21%3A00535299" target="_blank" >RIV/60077344:_____/21:00535299 - isvavai.cz</a>
Alternative codes found
RIV/68081766:_____/21:00535299 RIV/60076658:12310/21:43904223
Result on the web
<a href="https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13383" target="_blank" >https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13383</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/1365-2656.13383" target="_blank" >10.1111/1365-2656.13383</a>
Alternative languages
Result language
angličtina
Original language name
Impacts of predator-induced behavioural plasticity on the temperature dependence of predator–prey activity and population dynamics
Original language description
Predation is a key ecological interaction affecting populations and communities. Climate warming can modify this interaction both directly by the kinetic effects of temperature on biological rates and indirectly through integrated behavioural and physiological responses of the predators and prey. Temperature dependence of predation rates can further be altered by predator-induced plasticity of prey locomotor activity, but empirical data about this effect are lacking.n2. We propose a general framework to understand the influence of predator-induced developmental plasticity on behavioural thermal reaction norms in prey and their consequences for predator–prey dynamics. Using a mesocosm experiment with dragonfly larvae (predator) and newt larvae (prey), we tested if the predatorinduced plasticity alters the elevation or the slope of the thermal reaction norms for locomotor activity metrics in prey. We also estimated the joint predator–prey thermal response in mean locomotor speed, which determines prey encounter rate, and modelled the effect of both phenomena on predator–prey population dynamics.n3. Thermal reaction norms for locomotor activity in prey were affected by predation risk cues but with minor influence on the joint predator–prey behavioural response. We found that predation risk cues significantly decreased the intercept of thermal reaction norm for total activity rate (i.e. all body movements) but not the other locomotor activity metrics in the prey, and that prey locomotor activity rate and locomotor speed increased with prey density.n4. Temperature had opposite effects on the mean relative speed of predator and prey as individual speed increased with temperature in predators but decreased in prey. This led to a negligible effect of body temperature on predicted prey encounter rates and predator–prey dynamics. The behavioural component of predator–prey interaction varied much more between individuals than with temperature and the presence of predation risk cues in our system.n5. We conclude that within-population variation in locomotor activity can buffer the influence of body temperature and predation risk cues on predator–prey interactions, and further research should focus on the magnitude and sources of behavioural variation in interacting species to predict the impact of climate change on predator–prey interactions and food web dynamics.nn
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
<a href="/en/project/GA17-15480S" target="_blank" >GA17-15480S: Freshwater ectotherms under climate change: the role of phenotypic plasticity in life histories and trophic interactions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Animal Ecology
ISSN
0021-8790
e-ISSN
—
Volume of the periodical
90
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
503-514
UT code for WoS article
000590992000001
EID of the result in the Scopus database
2-s2.0-85096655332