Widespread deoxygenation of temperate lakes.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F21%3A00553187" target="_blank" >RIV/60077344:_____/21:00553187 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1038/s41586-021-03550-y" target="_blank" >https://doi.org/10.1038/s41586-021-03550-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-021-03550-y" target="_blank" >10.1038/s41586-021-03550-y</a>
Alternative languages
Result language
angličtina
Original language name
Widespread deoxygenation of temperate lakes.
Original language description
The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity(1,2), nutrient biogeochemistry(3), greenhouse gas emissions(4), and the quality of drinking water(5). The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity(6,7), but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification(8,9) or oxygen may increase as a result of enhanced primary production(10). Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans(6,7) and could threaten essential lake ecosystem services(2,3,5,11).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10501 - Hydrology
Result continuities
Project
<a href="/en/project/EF16_025%2F0007417" target="_blank" >EF16_025/0007417: Biomanipulation as a tool for improving water quality of dam reservoirs</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature
ISSN
0028-0836
e-ISSN
1476-4687
Volume of the periodical
594
Issue of the periodical within the volume
7861
Country of publishing house
GB - UNITED KINGDOM
Number of pages
5
Pages from-to
66-70
UT code for WoS article
000657457400018
EID of the result in the Scopus database
2-s2.0-85107151997