All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00557396" target="_blank" >RIV/60077344:_____/22:00557396 - isvavai.cz</a>

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/brv.12832" target="_blank" >https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/brv.12832</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/brv.12832" target="_blank" >10.1111/brv.12832</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates

  • Original language description

    Soil organisms drive major ecosystem functions by mineralising carbon and releasing nutrients during decomposition processes, which supports plant growth, aboveground biodiversity and, ultimately, human nutrition. Soil ecologists often operate with functional groups to infer the effects of individual taxa on ecosystem functions and services. Simultaneous assessment of the functional roles of multiple taxa is possible using food-web reconstructions, but our knowledge of the feeding habits of many taxa is insufficient and often based on limited evidence. Over the last two decades, molecular, biochemical and isotopic tools have improved our understanding of the feeding habits of various soil organisms, yet this knowledge is still to be synthesised into a common functional framework. Here, we provide a comprehensive review of the feeding habits of consumers in soil, including protists, micro-, meso- and macrofauna (invertebrates), and soil-associated vertebrates. We have integrated existing functional group classifications with findings gained with novel methods and compiled an overarching classification across taxa focusing on key universal traits such as food resource preferences, body masses, microhabitat specialisation, protection and hunting mechanisms. Our summary highlights various strands of evidence that many functional groups commonly used in soil ecology and food-web models are feeding on multiple types of food resources. In many cases, omnivory is observed down to the species level of taxonomic resolution, challenging realism of traditional soil food-web models based on distinct resource-based energy channels. Novel methods, such as stable isotope, fatty acid and DNA gut content analyses, have revealed previously hidden facets of trophic relationships of soil consumers, such as food assimilation, multichannel feeding across trophic levels, hidden trophic niche differentiation and the importance of alternative food/prey, as well as energy transfers across ecosystem compartments. Wider adoption of such tools and the development of open interoperable platforms that assemble morphological, ecological and trophic data as traits of soil taxa will enable the refinement and expansion of the multifunctional classification of consumers in soil. The compiled multifunctional classification of soil-associated consumers will serve as a reference for ecologists working with biodiversity changes and biodiversity-ecosystem functioning relationships, making soil food-web research more accessible and reproducible.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biological Reviews

  • ISSN

    1464-7931

  • e-ISSN

    1469-185X

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    61

  • Pages from-to

    1057-1117

  • UT code for WoS article

    000744680200001

  • EID of the result in the Scopus database

    2-s2.0-85123107130