All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stability of soil organic carbon under long-term fertilization: Results from 13C NMR analysis and laboratory incubation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00557497" target="_blank" >RIV/60077344:_____/22:00557497 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0013935121017771?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0013935121017771?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.envres.2021.112476" target="_blank" >10.1016/j.envres.2021.112476</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stability of soil organic carbon under long-term fertilization: Results from 13C NMR analysis and laboratory incubation

  • Original language description

    Long-term fertilization has shown a high relevance as regards soil organic carbon (SOC) sequestration, but the degree of stability of the sequestered SOC has not been widely studied up to now. Using physical fractionation combined with laboratory incubation and NMR spectroscopy, we evaluated the differences in SOC stability caused by long-term fertilization. Four SOC fractions were isolated and examined for contents and chemical composition and cumulative amount of CO2-C respired from the fractions under six fertilization treatments: control (CK), balanced inorganic fertilization (NPK), NPK combined with pig manure (MNPK), NPK combined 1.5 times of pig manure (1.5MNPK), and NPK combined with high amount of manure (M2NPK). The highest contents of SOC were recorded for the coarse particulate organic carbon (cPOC) fraction, ranging from 17.25 to 30.47 g kg-1 under CK and M2NPK. The highest cumulative amount of CO2-C was released from the cPOC fraction under manure treatments (M2NPK and 1.5NPKM), which was 56 and 43% higher than that from CK, whereas the lowest amount of CO2-C was released from the mineral associated-C (MOC) fraction under the same treatments, being 65 and 49% higher than that released from CK, suggesting low SOC stability in cPOC and high SOC stability in MOC fractions. However, manure treatments (M2NPK and 1.5NPKM) greatly lowered the specific amount of C-mineralized (C-mineralized per unit total SOC) in fractions and whole soil, suggesting the ability of manure to accumulate more SOC by reducing SOC losses. Moreover, carbonyl-C was found to be the form of SOC experiencing major degree of sequestration under current fertilization practices. The SOC stability indices, aromaticity index (AI), hydrophobicity index (HI) and alkyl-C/O-alkyl-C were found to be higher in manure treated plots further suggesting higher stability of SOC under manure addition. Thus, long-term manure combined with mineral fertilizers would enhance SOC stability through minimizing SOC losses and promoting accumulation of stable C forms in a Chinese Mollisol.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Research

  • ISSN

    0013-9351

  • e-ISSN

    1096-0953

  • Volume of the periodical

    205

  • Issue of the periodical within the volume

    April

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    112476

  • UT code for WoS article

    000730400200002

  • EID of the result in the Scopus database

    2-s2.0-85120652596