All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00558557" target="_blank" >RIV/60077344:_____/22:00558557 - isvavai.cz</a>

  • Alternative codes found

    RIV/61388971:_____/22:00558557 RIV/60076658:12310/22:43904981

  • Result on the web

    <a href="https://academic.oup.com/plphys/article/189/2/790/6521047?login=true" target="_blank" >https://academic.oup.com/plphys/article/189/2/790/6521047?login=true</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/plphys/kiac045" target="_blank" >10.1093/plphys/kiac045</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Assembly of D1/D2 complexes of photosystem II: Binding of pigments and a network of auxiliary proteins

  • Original language description

    Analysis of isolated assembly complexes provides new insights into the early stages of photosystem II biogenesis. Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1(mod) and D2(mod)). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1(mod) consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2(mod) contained D2/cytochrome b(559) with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1(mod) but not D2(mod), formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plant Physiology

  • ISSN

    0032-0889

  • e-ISSN

    1532-2548

  • Volume of the periodical

    189

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    790-804

  • UT code for WoS article

    000764158300001

  • EID of the result in the Scopus database

    2-s2.0-85127044266