Shape of Evasive Prey Can Be an Important Cue That Triggers Learning in Avian Predators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F22%3A00559025" target="_blank" >RIV/60077344:_____/22:00559025 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12310/22:43904909
Result on the web
<a href="https://www.frontiersin.org/articles/10.3389/fevo.2022.910695/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fevo.2022.910695/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fevo.2022.910695" target="_blank" >10.3389/fevo.2022.910695</a>
Alternative languages
Result language
angličtina
Original language name
Shape of Evasive Prey Can Be an Important Cue That Triggers Learning in Avian Predators
Original language description
Advertising escape ability could reduce predatory attacks. However, the effectiveness of certain phenotypic cues (e.g., color, shape, and size) in signaling evasiveness is still unknown. Understanding the role of such signals in driving predator learning is important to infer the evolutionary mechanisms leading to convergent evasiveness signals among prey species (i.e., evasive mimicry). We aim to understand the role of the color pattern (white patches on dark background) and morphology (extended butterfly hindwings) in driving learning and avoidance of escaping prey by surrogate avian predators, the European blue tit. These cues are common in butterflies and have been suspected to advertise escape ability in nature. We use dummy butterflies harboring shape and color patterns commonly found in skippers (family Hesperiidae). The prey models displayed the studied phenotypical cues (hindwing tails and white bands) in factorial combinations, and we tested whether those cues were learned as evasive signals and were generalised to different phenotypes. Our results suggest that hindwing tails and white bands can be associated with prey evasiveness. In addition, wild blue tits might learn and avoid attacking prey models bearing the studied phenotypic cues. Although blue tits seem to have an initial preference for the phenotype consisting of white patches and hindwing tails, the probability of attacking it was substantially reduced once the cues were associated with escaping ability. This suggests that the same morphological cues might be interchangeable as preference/avoidance signals. Further investigation of the salience of hindwing tails vs. white bands as cues for escaping ability, revealed that predators can associate both color pattern and shape to the difficulty of capture, and possibly generalize their aversion to other prey harboring those cues. More studies with larger sample sizes are needed to confirm this trend. Altogether, our results highlight the hitherto overlooked role of shape (butterfly hindwing tails) for signaling prey unprofitability
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10614 - Behavioral sciences biology
Result continuities
Project
<a href="/en/project/GJ20-18566Y" target="_blank" >GJ20-18566Y: The role of species interactions in the diversification of Neotropical butterflies at the macroevolutionary and microevolutionary scales</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Ecology and Evolution
ISSN
2296-701X
e-ISSN
2296-701X
Volume of the periodical
10
Issue of the periodical within the volume
JUL 12
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
910695
UT code for WoS article
000831749500001
EID of the result in the Scopus database
2-s2.0-85134908681