All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Surface engineering of AgNPs-decorated polyetheretherketone

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00566798" target="_blank" >RIV/60077344:_____/23:00566798 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389013:_____/23:00566798

  • Result on the web

    <a href="https://www.mdpi.com/1422-0067/24/2/1432" target="_blank" >https://www.mdpi.com/1422-0067/24/2/1432</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms24021432" target="_blank" >10.3390/ijms24021432</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Surface engineering of AgNPs-decorated polyetheretherketone

  • Original language description

    Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.n

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1422-0067

  • e-ISSN

    1422-0067

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    1432

  • UT code for WoS article

    000915232900001

  • EID of the result in the Scopus database

    2-s2.0-85146612199