All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Grass rather than legume species decreases soil organic matter decomposition with nutrient addition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00571015" target="_blank" >RIV/60077344:_____/23:00571015 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0038071722003935?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0038071722003935?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.soilbio.2022.108936" target="_blank" >10.1016/j.soilbio.2022.108936</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Grass rather than legume species decreases soil organic matter decomposition with nutrient addition

  • Original language description

    Nutrient addition to soil can strongly affect interactions at the root-soil interface, which play a central role in terrestrial ecosystem functions. Controversies, however, remain on whether or not soils sequester more carbon (C) with nutrient addition (for example in the context of increasing atmospheric CO2 concentrations), and what is the role of plant traits and growth strategies in these impacts. In this study, we conducted a laboratory manipulation experiment focused on the effects of a grass (Lolium perenne L.) species, a legume (Lotus corniculatus L.) species, and their mixture with or without nutrient addition on plant biomass, root-derived respiration, soil organic matter (SOM) decomposition, and microbial community structure.L. perenne biomass and root-derived respiration were more responsive than L. corniculatus biomass and rootderived respiration to nutrient addition. The decomposition of SOM decreased, and the priming effect (PE) was negative, both with and without nutrient addition, in both plant species. Nutrient addition, however, impacted the magnitude of PE to a lesser extent in L. corniculatus than in L. perenne and in monocultures than in the mixture. With nutrient addition, fungi were more abundant and utilized a greater proportion of root-derived C than bacteria. In conclusion, the current study suggests that nutrient addition may promote a positive soil C-balance through reduced SOM decomposition, and that plant species mixtures with increased root-derived C-flow (representing root and rhizomicrobial respiration) suppressed SOM decomposition to a greater extent.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40104 - Soil science

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Soil Biology and Biochemistry

  • ISSN

    0038-0717

  • e-ISSN

  • Volume of the periodical

    177

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    108936

  • UT code for WoS article

    000915875100001

  • EID of the result in the Scopus database

    2-s2.0-85145232383