All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Agronomic investigation of spray dispersion of metal-based nanoparticles on sunflowers in real-world environments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00571474" target="_blank" >RIV/60077344:_____/23:00571474 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15640/23:73620650 RIV/61989100:27640/23:10253904

  • Result on the web

    <a href="https://www.mdpi.com/2223-7747/12/9/1789" target="_blank" >https://www.mdpi.com/2223-7747/12/9/1789</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/plants12091789" target="_blank" >10.3390/plants12091789</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Agronomic investigation of spray dispersion of metal-based nanoparticles on sunflowers in real-world environments

  • Original language description

    In environmental and agronomic settings, even minor imbalances can trigger a range of unpredicted responses. Despite the widespread use of metal-based nanoparticles (NPs) and new bio-nanofertilizers, their impact on crop production is absent in the literature. Therefore, our research is focused on the agronomic effect of spray application of gold nanoparticles anchored to SiO2 mesoporous silica (AuSi-NPs), zinc oxide nanoparticles (ZnO-NPs), and iron oxide nanoparticles (Fe3O4-NPs) on sunflowers under real-world environments. Our findings revealed that the biosynthetically prepared AuSi-NPs and ZnO-NPs were highly effective in enhancing sunflower seasonal physiology, e.g., the value of the NDVI index increased from 0.012 to 0.025 after AuSi-NPs application. The distribution of leaf trichomes improved and the grain yield increased from 2.47 t ha−1 to 3.29 t ha−1 after ZnO-NPs application. AuSi-NPs treatment resulted in a higher content of essential linoleic acid (54.37%) when compared to the NPs-free control (51.57%), which had a higher determined oleic acid. No NPs or residual translocated metals were detected in the fully ripe sunflower seeds, except for slightly higher silica content after the AuSi-NPs treatment. Additionally, AuSi-NPs and NPs-free control showed wide insect biodiversity while ZnO-NPs treatment had the lowest value of phosphorus as anti-nutrient. Contradictory but insignificant effect on physiology, yield, and insect biodiversity was observed in Fe3O4-NPs treatment. Therefore, further studies are needed to fully understand the long-term environmental and agricultural sustainability of NPs applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plants

  • ISSN

    2223-7747

  • e-ISSN

    2223-7747

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    24

  • Pages from-to

    1789

  • UT code for WoS article

    000987398900001

  • EID of the result in the Scopus database

    2-s2.0-85159218650