Bioaccumulation of chemical elements at post-industrial freshwater sites varies predictably between habitats, elements and taxa: A power law approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F23%3A00574967" target="_blank" >RIV/60077344:_____/23:00574967 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12310/23:43907214 RIV/00216224:14310/23:00132173 RIV/00216208:11310/23:10468220
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0048969723044170/pdfft?md5=f1a6f37bee4528b94ebe0ce3e0104253&pid=1-s2.0-S0048969723044170-main.pdf" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969723044170/pdfft?md5=f1a6f37bee4528b94ebe0ce3e0104253&pid=1-s2.0-S0048969723044170-main.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2023.165794" target="_blank" >10.1016/j.scitotenv.2023.165794</a>
Alternative languages
Result language
angličtina
Original language name
Bioaccumulation of chemical elements at post-industrial freshwater sites varies predictably between habitats, elements and taxa: A power law approach
Original language description
Elevated environmental levels of elements originating from anthropogenic activities threaten natural communities and public health, as these elements can persist and bioaccumulate in the environment. However, their environmental risks and bioaccumulation patterns are often habitat-, species- and element-specific. We studied the bioaccumulation patterns of 11 elements in seven freshwater taxa in post-mining habitats in the Czech Republic, ranging from less polluted mining ponds to highly polluted fly ash lagoons. We found nonlinear, power-law relationships between the environmental and tissue concentrations of the elements, which may explain differences in bioaccumulation factors (BAF) reported in the literature. Tissue concentrations were driven by the environmental concentrations in non-essential elements (Al, As, Co, Cr, Ni, Pb and V), but this dependence was limited in essential elements (Cu, Mn, Se and Zn). Tissue concentrations of most elements were also more closely related to substrate than to water concentrations. Bioaccumulation was habitat specific in eight elements: stronger in mining ponds for Al and Pb, and stronger in fly ash lagoons for As, Cu, Mn, Pb, Se, V and Zn, although the differences were often minor. Bioaccumulation of some elements further increased in mineral-rich localities. Proximity to substrate, rather than trophic level, drove increased bioaccumulation levels across taxa. This highlights the importance of substrate as a pollutant reservoir in standing freshwaters and suggests that benthic taxa, such as molluscs (e.g., Physella) and other macroinvertebrates (e.g., Nepa), constitute good bioindicators. Despite the higher environmental risks in fly ash lagoons than in mining ponds, the observed ability of freshwater biota to sustain pollution supports the conservation potential of post-industrial sites. The power law approach used here to quantify and disentangle the effects of various bioaccumulation drivers may be helpful in additional contexts, increasing our ability to predict the effects of other contaminants and environmental hazards on biota.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
<a href="/en/project/GA18-15927S" target="_blank" >GA18-15927S: Overlooked man-made habitats: understanding the drivers and patterns of freshwater biota in polluted standing waters</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Science of the Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Volume of the periodical
901
Issue of the periodical within the volume
NOV 25
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
165794
UT code for WoS article
001054885000001
EID of the result in the Scopus database
2-s2.0-85166053559