All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00605252" target="_blank" >RIV/60077344:_____/24:00605252 - isvavai.cz</a>

  • Alternative codes found

    RIV/60076658:12310/24:43908015

  • Result on the web

    <a href="https://doi.org/10.1186/s40793-024-00574-5" target="_blank" >https://doi.org/10.1186/s40793-024-00574-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s40793-024-00574-5" target="_blank" >10.1186/s40793-024-00574-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir

  • Original language description

    Background Protists are essential contributors to eukaryotic diversity and exert profound influence on carbon fluxes and energy transfer in freshwaters. Despite their significance, there is a notable gap in research on protistan dynamics, particularly in the deeper strata of temperate lakes. This study aimed to address this gap by integrating protists into the well-described spring dynamics of Rimov reservoir, Czech Republic. Over a 2-month period covering transition from mixing to established stratification, we collected water samples from three reservoir depths (0.5, 10 and 30 m) with a frequency of up to three times per week. Microbial eukaryotic and prokaryotic communities were analysed using SSU rRNA gene amplicon sequencing and dominant protistan groups were enumerated by Catalysed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). Additionally, we collected samples for water chemistry, phyto- and zooplankton composition analyses.Results Following the rapid changes in environmental and biotic parameters during spring, protistan and bacterial communities displayed swift transitions from a homogeneous community to distinct strata-specific communities. A prevalence of auto- and mixotrophic protists dominated by cryptophytes was associated with spring algal bloom-specialized bacteria in the epilimnion. In contrast, the meta- and hypolimnion showcased a development of a protist community dominated by putative parasitic Perkinsozoa, detritus or particle-associated ciliates, cercozoans, telonemids and excavate protists (Kinetoplastida), co-occurring with bacteria associated with lake snow.Conclusions Our high-resolution sampling matching the typical doubling time of microbes along with the combined microscopic and molecular approach and inclusion of all main components of the microbial food web allowed us to unveil depth-specific populations' successions and interactions in a deep lentic ecosystem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Environmental Microbiome

  • ISSN

    2524-6372

  • e-ISSN

    2524-6372

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    16

  • Pages from-to

    31

  • UT code for WoS article

    001216151600001

  • EID of the result in the Scopus database

    2-s2.0-85192542071