All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inhibition of Atm and Atr kinases affects embryo development and the DNA damage response in sterlet (Acipenser ruthenus)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00616657" target="_blank" >RIV/60077344:_____/24:00616657 - isvavai.cz</a>

  • Alternative codes found

    RIV/60076658:12520/24:43908195

  • Result on the web

    <a href="https://doi.org/10.1016/j.aquaculture.2024.741146" target="_blank" >https://doi.org/10.1016/j.aquaculture.2024.741146</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aquaculture.2024.741146" target="_blank" >10.1016/j.aquaculture.2024.741146</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inhibition of Atm and Atr kinases affects embryo development and the DNA damage response in sterlet (Acipenser ruthenus)

  • Original language description

    Embryo development is regulated by numerous interconnected pathways that direct cell fate, differentiation, and genetic stability. During development, these pathways can be altered by exogenous factors, such as pollutants, or endogenous factors, such as replication stress. Ataxia telangiectasia mutated (Atm) and ataxia telangiectasia and Rad3-related (Atr) kinases play critical roles in regulating the cell cycle, the DNA damage response (DDR), DNA repair, checkpoint activation, and apoptosis. In cells with damaged DNA, these kinases can slow the cell cycle to provide the necessary time and ability for DNA repair. In this study, we investigated the roles of Atm and Atr in embryo development and DDR in the sterlet ( Acipenser ruthenus ). Sterlets belong to the Acipenseridae family, one of the most threatened groups of species. Thus, understanding their genetics, biology, embryogenesis, and conservation is crucial. Furthermore, the sterlet is a significant aquaculture species that represents an intriguing model for studying polyploidy and genome plasticity. In our research, we examined the effects of chemical inhibition of Atm and Atr on sterlet embryo development in the absence and presence of the genotoxicant camptothecin (CPT). Our findings indicated that in the absence of genotoxic challenge, Atr autophosphorylation increases between 1 and 3 days post-fertilization (dpf) and decreases by 5 dpf, illustrating the involvement of Atr in the response to replication stress in rapidly differentiating tissues during the early stages of embryo development. Conversely, Atm inhibition was associated with a dosedependent reduction in embryo viability, highlighting its importance in normal embryo development. When sterlet embryos were exposed to CPT, both Atm and Atr were involved in DDR and the activation of apoptosis. Notably, when both kinases were inhibited simultaneously, the embryos lost their ability to induce apoptosis and mitigate DNA damage, resulting in 100% embryonic mortality. These results suggest that Atm and Atr have distinct functions during normal embryo development, but they can partially complement each other in DDR.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    40103 - Fishery

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Aquaculture

  • ISSN

    0044-8486

  • e-ISSN

    1873-5622

  • Volume of the periodical

    590

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    741146

  • UT code for WoS article

    001248743400001

  • EID of the result in the Scopus database

    2-s2.0-85194553316