Fractional mimetic dark matter: A fractional action-like variational approach.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60077344%3A_____%2F24%3A00618139" target="_blank" >RIV/60077344:_____/24:00618139 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1142/S0217732324501475" target="_blank" >https://doi.org/10.1142/S0217732324501475</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0217732324501475" target="_blank" >10.1142/S0217732324501475</a>
Alternative languages
Result language
angličtina
Original language name
Fractional mimetic dark matter: A fractional action-like variational approach.
Original language description
In this paper, we propose a nonlocal extension of the mimetic dark matter model based on the FALVA implementation of fractional calculus. Our primary objective to explore how certain properties of dark matter can be modeled within the FALVA framework rather than formulate a phenomenological model. We begin by constructing the action functional of the cosmological extension of the mimetic dark model and deriving the nonlinear equations of motion in the general case. Next, we focus on a fractional-power homogeneous mimetic dark field with an exponential expansion factor. We derive the equation of motion for the lapse field and obtain its general solution. Analytical solutions are then obtained for small time intervals and arbitrary values of the fractionality parameter. These solutions enable us to establish the physical line element of spacetime, incorporating the mimetic dark matter field. From this line element, we derive the Ricci tensor, Ricci scalar, and geodesic equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/QK22020134" target="_blank" >QK22020134: Inovative fisheries management of a large reservoir</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Modern Physics Letters A
ISSN
0217-7323
e-ISSN
1793-6632
Volume of the periodical
39
Issue of the periodical within the volume
31N32
Country of publishing house
SG - SINGAPORE
Number of pages
21
Pages from-to
2450147
UT code for WoS article
001358031300007
EID of the result in the Scopus database
2-s2.0-85207410429