Applying the Ant Colony Optimisation Algorithm to the Capacitated Multi-Depot Vehicle Routing Problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F16%3A00532805" target="_blank" >RIV/60162694:G42__/16:00532805 - isvavai.cz</a>
Result on the web
<a href="http://vavtest.unob.cz/registr" target="_blank" >http://vavtest.unob.cz/registr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1504/IJBIC.2016.10000256" target="_blank" >10.1504/IJBIC.2016.10000256</a>
Alternative languages
Result language
angličtina
Original language name
Applying the Ant Colony Optimisation Algorithm to the Capacitated Multi-Depot Vehicle Routing Problem
Original language description
The Multi-Depot Vehicle Routing Problem (MDVRP) is an extension of a classic Vehicle Routing Problem (VRP). There are many heuristic and metaheuristic algorithms (e.g. tabu search, simulated annealing, genetic algorithms) as this is an NP-hard problem and, therefore, exact methods are not feasible for more complex problems. Another possibility is to adapt the Ant Colony Optimization (ACO) algorithm to this problem. This article presents an original solution of authors to the MDVRP problem via ACO algorithm. The first part deals with the algorithm including its principles and parameters. Then several examples and experiments are shown.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
KA - Militarism
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Bio-Inspired Computation
ISSN
1758-0366
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
228-233
UT code for WoS article
000391027600005
EID of the result in the Scopus database
—