Construction of an Infinite Cyclic Group Formed by Artificial Differential Neurons
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F23%3A00558553" target="_blank" >RIV/60162694:G42__/23:00558553 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26220/22:PU144700
Result on the web
<a href="https://www.mdpi.com/2227-7390/10/9/1571" target="_blank" >https://www.mdpi.com/2227-7390/10/9/1571</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10091571" target="_blank" >10.3390/math10091571</a>
Alternative languages
Result language
angličtina
Original language name
Construction of an Infinite Cyclic Group Formed by Artificial Differential Neurons
Original language description
Infinite cyclic groups created by various objects belong to the class to the class basic algebraic structures. In this paper, we construct the infinite cyclic group of differential neurons which are modifications of artificial neurons in analogy to linear ordinary differential operators of the n-th order. We also describe some of their basic properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICS
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
1571
UT code for WoS article
000795418900001
EID of the result in the Scopus database
—