Reliability Estimation of Critical Infrastructure Segment Backed up by the Circular Data Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG42__%2F25%3A00560218" target="_blank" >RIV/60162694:G42__/25:00560218 - isvavai.cz</a>
Alternative codes found
RIV/60162694:G43__/25:00560218
Result on the web
<a href="http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10171240" target="_blank" >http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10171240</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICMT58149.2023.10171311" target="_blank" >10.1109/ICMT58149.2023.10171311</a>
Alternative languages
Result language
angličtina
Original language name
Reliability Estimation of Critical Infrastructure Segment Backed up by the Circular Data Analysis
Original language description
In this paper, we present a novel statistical approach to assess and model data of water distribution network (WDN) failures which contain only few pieces of information, namely the number of failures in a month. The applied statistical method is known as the circular (directional) statistics. It concerns with angular/cyclical data in degrees or radians. The sample space is typically a circle or a sphere and due to the nature of the circular data, they cannot be analysed with commonly used statistical techniques. Circular data approaches can be adapted to analyse time-of-year data and year cycles. Using the methods of descriptive and inferential statistics for circular data, we show that the WDN failure data show a deviation from the uniform model and cannot be modelled by the parametric models. Therefore, we apply the nonparametric circular kernel density estimates to assess and model the data and predict the expected numbers of failures in the respective months of a year.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2023 9th International Conference on Military Technologies, ICMT 2023 - Proceedings
ISBN
979-8-3503-2568-3
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
Institute of Electrical and Electronics Engineers Inc.
Place of publication
—
Event location
Brno
Event date
Jan 1, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—