An overview of topological and fuzzy topological hypergroupoids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F17%3A00534904" target="_blank" >RIV/60162694:G43__/17:00534904 - isvavai.cz</a>
Result on the web
<a href="http://eiris.it/ojs/index.php/ratiomathematica/article/view/389" target="_blank" >http://eiris.it/ojs/index.php/ratiomathematica/article/view/389</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23755/rm.v33i0.389" target="_blank" >10.23755/rm.v33i0.389</a>
Alternative languages
Result language
angličtina
Original language name
An overview of topological and fuzzy topological hypergroupoids
Original language description
On a hypergroup, one can define a topology such that the hyperoperation is pseudocontinuous or continuous. This concepts can be extend to the fuzzy case and a connection between the classical and the fuzzy (pseudo)continuous hyperoperations can be given. This paper, that is his an overview of results received by S. Hoskova-Mayerova with coauthors I. Cristea, M. Tahere and B. Davaz, gives examples of topological hypergroupoids and show that there is no relation (in general) between pseudotopological and strongly pseudotopological hypergroupoids. In particular, it shows a topological hypergroupoid that does not depend on the pseudocontinuity nor on strongly pseudocontinuity of the hyperoperation.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ratio Mathematica
ISSN
1592-7415
e-ISSN
2282-8214
Volume of the periodical
2017
Issue of the periodical within the volume
33
Country of publishing house
IT - ITALY
Number of pages
18
Pages from-to
21-38
UT code for WoS article
—
EID of the result in the Scopus database
—