The Sum of the Series of Reciprocals of the Quadratic Polynomials with Complex Conjugate Roots
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F18%3A00536325" target="_blank" >RIV/60162694:G43__/18:00536325 - isvavai.cz</a>
Result on the web
<a href="http://eiris.it/ojs/index.php/ratiomathematica/issue/view/VOL%2035%20(2018)" target="_blank" >http://eiris.it/ojs/index.php/ratiomathematica/issue/view/VOL%2035%20(2018)</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23755/rm.v35i0.427" target="_blank" >10.23755/rm.v35i0.427</a>
Alternative languages
Result language
angličtina
Original language name
The Sum of the Series of Reciprocals of the Quadratic Polynomials with Complex Conjugate Roots
Original language description
This contribution is a follow-up to eight preceding author's papers dealing with the sums of the series of reciprocals of quadratic polynomials with different positive integer roots, with double non-positive integer root, with different negative integer roots, with double positive integer root, with one negative and one positive integer root, with purely imaginary conjugate roots, with integer roots, and with the sum of the finite series of reciprocals of the quadratic polynomials with integer purely imaginary conjugate roots respectively. We deal with the sum of the series of reciprocals of the quadratic polynomials with complex conjugate roots, derive the formula for the sum of these series and verify it by some examples evaluated using the basic programming language of the computer algebra system Maple 16. This contribution can be an inspiration for teachers of mathematics who are teaching the topic Infinite series or as a subject matter for work with talented students.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ratio Mathematica - Journal of Foundations and Applications of Mathematics
ISSN
1592-7415
e-ISSN
2282-8214
Volume of the periodical
35
Issue of the periodical within the volume
2/2018
Country of publishing house
IT - ITALY
Number of pages
11
Pages from-to
75-85
UT code for WoS article
—
EID of the result in the Scopus database
—