Pre-semihyperadditive Categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F19%3A00536452" target="_blank" >RIV/60162694:G43__/19:00536452 - isvavai.cz</a>
Result on the web
<a href="http://www.anstuocmath.ro/mathematics/anale2019vol1/13_Shojaei%20H.,%20Ameri%20R.,%20Hovskov%20Mayerova%20S..pdf" target="_blank" >http://www.anstuocmath.ro/mathematics/anale2019vol1/13_Shojaei%20H.,%20Ameri%20R.,%20Hovskov%20Mayerova%20S..pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/auom-2019-0014" target="_blank" >10.2478/auom-2019-0014</a>
Alternative languages
Result language
angličtina
Original language name
Pre-semihyperadditive Categories
Original language description
In this paper we extend the notion of classical (pre-)semiadditive category to (pre-)semihyperadditive category. Algebraic hyperstructures are algebraic systems whose objects possessing the hyperoperations or multi-valued operation. We introduce categories in which for objects A and B, the class of all morphisms from A to B denoted by Mor(A, B), admits an algebraic hyperstructures, such as semihyper- group or hypergroup. In this regards we introduce the various types of pre-semihyperadditive categories. Also, we construct some (pre-)semi-hyperadditive categories by introducing a class of hypermodules named general Krasner hypermodules. Finally, we investigate some properties of these categories.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA
ISSN
1224-1784
e-ISSN
1844-0835
Volume of the periodical
27
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
20
Pages from-to
269-288
UT code for WoS article
000465369400014
EID of the result in the Scopus database
2-s2.0-85064500828