Lagrangian for circuits with higher-order elements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F19%3A00537379" target="_blank" >RIV/60162694:G43__/19:00537379 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26220/19:PU133845
Result on the web
<a href="https://www.mdpi.com/1099-4300/21/11/1059/pdf" target="_blank" >https://www.mdpi.com/1099-4300/21/11/1059/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e21111059" target="_blank" >10.3390/e21111059</a>
Alternative languages
Result language
angličtina
Original language name
Lagrangian for circuits with higher-order elements
Original language description
The necessary and sufficient conditions of the validity of Hamilton’s variational principle for circuits consisting of (alpha,beta) elements from Chua’s periodical table are derived. It is shown that the principle holds if and only if all the circuit elements lie on the so-called sigma-diagonal with a constant sum of the indices alpha and beta. In this case, the Lagrangian is the sum of the state functions of elements of the L or +R types minus the sum of the state functions of elements of the C or -R types. The equations of motion generated by this Lagrangian are always of even-order. If all elements are linear, the equations of motion contain only even-order derivatives of the independent variable. Conclusions are illustrated on an example of the synthesis of the Pais-Uhlenbeck oscillator via the elements from Chua’s table.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA18-21608S" target="_blank" >GA18-21608S: Memristors and other unconventional circuit elements</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Entropy
ISSN
1099-4300
e-ISSN
1099-4300
Volume of the periodical
21
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
1059
UT code for WoS article
000502145000032
EID of the result in the Scopus database
2-s2.0-85075449872