Wajsberg algebras of order n(n <= 9)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F20%3A00555331" target="_blank" >RIV/60162694:G43__/20:00555331 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00521-019-04676-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorContributingOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorContributingOnlineFirst_20191224#citeas" target="_blank" >https://link.springer.com/article/10.1007/s00521-019-04676-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorContributingOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorContributingOnlineFirst_20191224#citeas</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-019-04676-x" target="_blank" >10.1007/s00521-019-04676-x</a>
Alternative languages
Result language
angličtina
Original language name
Wajsberg algebras of order n(n <= 9)
Original language description
Knowing the applications of logical algebras in various fields, such as artificial intelligence or coding theory, in this paper, we study some properties of a special class of such algebras, namely finite Wajsberg algebras. For this purpose, we give a representation theorem for finite Wajsberg algebras and give a formula for the number of non-isomorphic Wajsberg algebras of order n; also we give the total number of finite Wajsberg algebras of order n. Since a big value of n involves a lot of computations, as examples, we present and describe all finite Wajsberg algebras of order n <= 9.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NEURAL COMPUTING & APPLICATIONS
ISSN
0941-0643
e-ISSN
1433-3058
Volume of the periodical
32
Issue of the periodical within the volume
17
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
13301-13312
UT code for WoS article
000504134600001
EID of the result in the Scopus database
2-s2.0-85077168645