Fuzzy Multi-Hypergroups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F20%3A00555680" target="_blank" >RIV/60162694:G43__/20:00555680 - isvavai.cz</a>
Result on the web
<a href="https://res.mdpi.com/d_attachment/mathematics/mathematics-08-00244/article_deploy/mathematics-08-00244.pdf" target="_blank" >https://res.mdpi.com/d_attachment/mathematics/mathematics-08-00244/article_deploy/mathematics-08-00244.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8020244" target="_blank" >10.3390/math8020244</a>
Alternative languages
Result language
angličtina
Original language name
Fuzzy Multi-Hypergroups
Original language description
A fuzzy multiset is a generalization of a fuzzy set. This paper aims to combine the innovative notion of fuzzy multisets and hypergroups. In particular, we use fuzzy multisets to introduce the concept of fuzzy multi-hypergroups as a generalization of fuzzy hypergroups. Different operations on fuzzy multi-hypergroups are defined and discussed and some results known for fuzzy hypergroups are generalized to fuzzy multi-hypergroups.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICS
ISSN
2227-7390
e-ISSN
2227-7390
Volume of the periodical
8
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
244
UT code for WoS article
000519234000099
EID of the result in the Scopus database
2-s2.0-85080125999