All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Even Order Half-Linear Differential Equations with Regularly Varying Coefficients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60162694%3AG43__%2F20%3A00555964" target="_blank" >RIV/60162694:G43__/20:00555964 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/8/8/1236" target="_blank" >https://www.mdpi.com/2227-7390/8/8/1236</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math8081236" target="_blank" >10.3390/math8081236</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Even Order Half-Linear Differential Equations with Regularly Varying Coefficients

  • Original language description

    We establish nonoscillation criterion for the even order half-linear differential equation $(-1)^n left(f_n(t)Phileft(x^{(n)}right)right)^{(n)} + sum_{l=1}^n (-1)^{n-l} beta_{n-l}left(f_{n-l}(t)Phileft(x^{(n-l)}right)right)^{(n-l)} = 0text{,}$ where $beta_0,beta_1,hdots,beta_{n-1}$ are real numbers, $n in mathbb{N}$, $Phi(s) = leftlvert s rightrvert^{p-1} mathop{mathrm{sgn}} s$ for $s in mathbb{R}$, $p in (1,infty)$ and $f_{n-l}$ is a regularly varying (at infinity) function of the index $alpha-lp$ for $l = 0,1,hdots,n$ and $alpha in mathbb{R}$. This equation can be understood as a generalization of the even order Euler type half-linear differential equation. We obtain this Euler type equation by rewriting the equation above as follows: the terms $f_n(t)$ and $f_{n-l}(t)$ are replaced by the $t^alpha$ and $t^{alpha-lp}$, respectively. Unlike in other texts dealing with the Euler type equation, in this article an approach based on the theory of regularly varying functions is used. We establish a nonoscillation criterion by utilizing the variational technique.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    11

  • Pages from-to

    1236

  • UT code for WoS article

    000568037300001

  • EID of the result in the Scopus database

    2-s2.0-85089482483